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Abstract (200 words max):  

The wide variety of clinical manifestations of the genetic syndrome neurofibromatosis type 1 

(NF1) are driven by overactivation of the RAS pathway.  Mitogen-activated protein kinase 

kinase inhibitors (MEKi) block downstream targets of RAS. The recent regulatory approvals of 

the MEKi selumetinib for inoperable symptomatic plexiform neurofibromas in children with 

NF1 has made it the first medical therapy approved for this indication in the United States, the 

European Union and elsewhere.  Several recently published and ongoing clinical trials have 

demonstrated that MEKi may have potential benefit for a variety of other NF1 manifestations, 

and there is broad interest in the field regarding the appropriate clinical use of these agents.  In 

this review, we present the current evidence regarding the use of existing MEKi for a variety of 

NF1-related manifestations, including tumor (neurofibromas, malignant peripheral nerve sheath 

tumors, low grade glioma, and juvenile myelomonocytic leukemia) and non-tumor (bone, pain, 

and neurocognitive) manifestations. We discuss the potential utility of MEKi in related genetic 

conditions characterized by overactivation of the RAS pathway (RASopathies).  In addition, we 

review practical treatment considerations for the use of MEKi as well as provide consensus 

recommendations regarding their clinical use from a panel of experts. 

 

Keywords:  MEK Inhibitors, Neurofibromatosis Type 1, Plexiform Neurofibromas, RASopathy, 
Low-Grade Glioma  
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Introduction 

Neurofibromatosis type 1 (NF1) is a common autosomal dominant tumor predisposition 

syndrome occurring in approximately 1:3000 individuals.1 It is caused by haploinsufficiency of 

the NF1 gene, which results in RAS pathway overactivation and contributes to tumor formation 

as well as other conditions associated with NF1, including neurocognitive deficits and bony 

changes.2,3 NF1 follows the classic tumor suppression paradigm in tumorigenesis with benign 

and advanced cancers invariably showing somatic inactivation of the normal allele.  Inhibition of 

the mitogen-activated protein kinase kinase (MEK), downstream of RAS, has recently been 

shown to shrink NF1-associated plexiform neurofibromas (PN), leading to the regulatory 

approvals of selumetinib specifically for symptomatic and inoperable PN in children.  The recent 

success of selumetinib and evidence of efficacy from other MEK inhibitors (MEKi) has led to 

questions of how MEKi can best be used to ameliorate the varied manifestations of NF1.  

Clinical features of NF1 may differ in underlying pathogenesis, and many non-tumor 

manifestations may be the result of NF1 haploinsufficiency rather than complete NF1 loss which 

may impact treatment approaches.4,5  We assembled an international, multidisciplinary panel of 

experts to review the existing evidence for the use of MEKi in NF1-associated tumor and non-

tumor manifestations and develop consensus-based, evidence-driven recommendations for their 

use and monitoring (see Supplementary Material).  Consensus recommendations from this group 

are summarized (Box). 

 

Comparison of Different MEKi 

Available MEKi are derived from the same chemical scaffold and share many 

pharmacologic properties.  Five MEKi are compared in Table 1, all of which are orally available 
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with similar metabolism and excretion, but variable half-lives.  All five agents have a similar 

side effect profile that includes rash, paronychia, decreased cardiac function and laboratory 

abnormalities (including creatine kinase (CK) elevation and liver dysfunction).  Although the 

results of pre-clinical brain penetrance studies vary between MEKi, these studies have not 

reliably predicted activity against central nervous system tumors. 

While MEKi have been extensively explored in adults with BRAF-driven melanoma and 

other malignancies, experience in children and in individuals with NF1 is limited.  Clinical trials 

in these populations frequently use doses below the recommended adult dose for cancer, making 

a direct comparison with adult cancer data difficult.  Recent evidence also suggests that MEKi 

alter the tumor immune environment which may contribute to their efficacy in addition to direct 

tumor effect.6-8 Despite chemical similarities, different MEKi may have important clinical 

differences.  While most MEKi show promise for NF1-associated indications, there have been no 

attempts yet to directly compare the clinical efficacy, toxicities, and effect on tumor immune 

microenvironment among MEKi.  Currently, formulation (particularly child-appropriate 

versions), availability (both from regulatory bodies and through insurance coverage), and 

specific clinical experience in NF1 indications may be the most important distinguishing features 

among these MEKi. 

 

Tumor Specific Uses of MEKi 

Plexiform Neurofibromas 

 Benign peripheral nerve sheath tumors known as PNs are one of the most common 

tumor-related manifestations of NF1 and can cause significant morbidity.9  Somatic inactivation 

of the normal  NF1 allele in Schwann cells10,11, leading to RAS pathway activation, is thought to 
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be a key initiating event in PN pathogenesis.  Targeted inhibition of the RAS pathway has 

resulted in tumor shrinkage in murine models of NF1 neurofibromas treated with either 

mirdametinib or selumetinib.12,13 

 Preclinical models have supported clinical trials of several MEKi in NF1-associated PN.  

Selumetinib showed a partial response (PR; >20% decrease by volumetric MRI) in 17 of 24 

(71%) participants in a phase 1 trial13 and 34 of 50 (68%) participants in the subsequent phase 2 

study.14  Selumetinib also prolonged progression free survival, as no participants in the phase 2 

trial had tumor progression in the first year of treatment despite 21 participants having tumors 

that were known to be growing at the time of study entry.  Individuals receiving selumetinib 

showed a clinically meaningful improvement in outcome measures such as patient-reported pain, 

as well as improvements in pulmonary function testing, strength and range of motion.  Though 

most participants receiving selumetinib had at least one treatment-related adverse event, the 

majority of these were mild (grade 1-2) and did not result in dose modification or drug 

discontinuation.14  Results of this study led to the regulatory approvals of selumetinib for 

pediatric patients with NF1 and inoperable PN.   

 While selumetinib is the only currently approved treatment for this indication in children, 

evidence suggests that other MEKi are also likely to be similarly effective.  In a phase 1/2A 

study, trametinib showed a PR in 12 of 26 (46%) children with NF1-associated PN.15  Interim 

results of a phase 2 trial of binimetinib (NCT03231306) for progressive or symptomatic PN 

show a similar response rate in children (70%)16 and adults (65%)17.  In participants ≥16 years 

old with progressive or symptomatic PN, the response rate to mirdametinib was 42% (8 of 19 

participants).18 While not directly comparable, interim results of a phase 2 trial of selumetinib 

(NCT02407405) in adults with symptomatic, inoperable PN show a 69% response rate.19  
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Results of ongoing clinical trials of mirdametinib (NCT03962543) in children and adults with 

PN have yet to be reported.  The use of MEKi for symptomatic PN in adults or for asymptomatic 

but growing and inoperable PN may be appropriate, but results from prospective studies are 

needed.   

 

Atypical Neurofibromas 

Atypical neurofibroma (AN) are defined based on histopathological features including 

increased cellularity and cellular atypia in the absence of malignant features. Many AN 

demonstrate deletion of CDKN2A/B.20 While less common than PN, AN are important in NF1 

because they may be precursor lesions for transformation to malignant peripheral nerve sheath 

tumor (MPNST).21  Many AN show increased avidity on 18F-flurodeoxyglucose PET scans 

relative to PN, and frequently appear as distinct nodular lesions (DNL) on MRI.22 

Mouse models of AN have explored the role of MEKi alone and in combination with 

other agents.23,24 Clinical trials have also evaluated responses of DNL and AN to MEKi, 

suggesting that some DNL or AN may respond to MEKi.25 However, prospective studies are 

needed to define the response rate and compare efficacy to PN and other tumors.13,14,18,19  If 

surgery is not feasible, treatment of AN/DNL with a MEKi can be considered given the 

possibility of response based on this preliminary data. Prior to initiating therapy, ruling out 

MPNST is imperative, and patients should be closely monitored to assess response to therapy. 

 

MPNST 

MPNST occur in roughly 10% of individuals with NF1, often arise from pre-existing PN 

or AN, and and are the leading cause of death for people with NF1.26,27  Multiple MPNST pre-
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clinical models have evaluated treatment with MEKi alone and in combination with other agents. 

Despite inhibition of cell growth in MPNST cell lines with MEKi,28,29 xenograft and genetically 

engineered mouse models of MPNST treated with single agent MEKi produced limited or no 

growth suppression.12,29-32  Tumor growth inhibition was transient and resulted in resistance and 

reactivation of target pathways.28 Combination therapy of MEKi with other targets of interest in 

MPNST pathogenesis (mTOR, MNK, BRD, MET) in pre-clinical models demonstrated tumor 

regression with synergistic responses.30-33   

To date, there is no evidence that single agent MEKi is effective to treat MPNST. 

Anecdotal evidence also suggests that MEKi do not prevent the development of MPNST, as 

development of MPNST has been reported in patients receiving MEKi.14 Ongoing 

(NCT03433183) and future clinical trials for MPNST will investigate combination therapies with 

MEKi.  

 

Cutaneous Neurofibroma 

Cutaneous neurofibromas (CN) are tumors of the skin that affect  >95% of adults with 

NF1 and are major detractors from quality of life, representing a substantial unmet need for 

people with NF1.34 Recent efforts have discovered a putative cell of origin for CN, uncovered 

shared developmental pathways between PN and CN, and developed multiple pre-clinical 

models that allow testing of therapeutic agents in various stages of CN formation in both ex vivo 

and in vivo models.35-39   Concurrently, a clinical trial of selumetinib for the treatment of CN 

(NCT02839720) is ongoing, and early reports show that all evaluable participants (n=6) 

demonstrate at least 20% decrease in average CN volume compared to baseline.40  However, 

participants have also experienced a number of systemic toxicities including rash, hypertension 
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and skin infection that have limited the treatment duration.   A phase 1 study evaluating three gel 

concentrations of the topical MEKi NFX-179 has recently reported early clinical results showing 

good tolerability, leading to a larger phase II study (NCT04435665).38  .  Although MEKi show 

preliminary activity against CN, a great deal of work remains to determine extent of response, 

optimal delivery, dosing, timing, and duration of treatment to maximize the therapeutic benefit of 

MEKi for CN. 

 

Low Grade Gliomas 

 Most NF1-associated pediatric low-grade glioma (LGG) harbor loss of both NF1 alleles  

only, without the BRAF aberrations which are common in sporadic cases.41 Older children and 

young adults with NF1-associated LGG (NF1-LGG) may have concomitant CDKN2A/B and 

ATRX mutations, and other concurrent alterations may yet be discovered. Tumors with 

CDKN2A/B and ATRX mutations, although maintaining some pilocytic features, also have 

anaplastic components and a more aggressive natural history.42 

Preclinical studies of MEKi in non-NF1 associated LGG have focused on BRAF-altered 

models.  In these models, treatment with selumetinib, trametinib or cobimetinib have led to 

decreased phosphorylation of ERK and reduced cell viability.43-45  In xenograft models of BRAF-

altered LGG, selumetinib resulted in decreased tumor volume and longer progression-free 

survival, while cobimetinib delayed tumor growth.12  Similarly, treatment with mirdametinib led 

to decreased tumor volume and proliferation or prevented tumor formation in two mouse models 

of NF1-LGG.46,47 

 A phase 2 clinical study of selumetinib included a stratum of children with recurrent, 

refractory or progressive NF1-LGG.48  Of the 25 children in this stratum, 10 (40%) achieved a 
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sustained PR (>50% reduction in tumor cross-product) to selumetinib at the recommended phase 

2 dose of 25mg/m2/dose twice daily, although one participant later developed progressive disease 

while on therapy.  The remaining 15 participants (60%) demonstrated stable disease.  Two-year 

progression-free survival was 96%.  Other MEKi have also been explored in NF1-associated and 

sporadic LGG.  Among three NF1-LGG participants in a phase 1 trial of binimetinib, the best 

radiographic response included one major response, one minor response and one stable disease.49  

For NF1-LGG that occur in the optic pathway, vision outcomes are as important as tumor 

progression.50 Among 88 previously untreated patients with NF1-associated optic pathway 

glioma receiving carboplatin-based therapy, visual acuity improved in 32%, was stable in 40%, 

and worsened in 28%.51 In comparison, among 10 children with recurrent, refractory or 

progressive NF1-associated optic pathway glioma treated in the phase 2 selumetinib study visual 

acuity improved in two (20%) and remained stable in eight (80%).48   

These studies have led to the development of a phase 3 study comparing selumetinib with 

carboplatin and vincristine in untreated NF1-LGG (ACNS1831, NCT03871257), as well as 

phase 2 trials of trametinib (NCT03363217, ACTRN12620001229965) and binimetinib 

(NCT02285439) that specifically investigate NF1-LGG, intermittent MEKi dosing schedules 

(NCT03326388) and strategies to overcome MEKi resistance (NCT04201457).  

These prospective trials may ultimately alter the standard of care for patients diagnosed 

with NF1- LGG, however there is still much that is unknown about MEKi therapy.  Factors 

associated with lack of response or acquired resistance are poorly understood, and the effect of 

MEKi on tumor senescence must be studied to inform questions regarding therapy duration and 

durability of response.52 Finally, as the majority of these patients will survive their tumors, 

treatment efficacy must be defined not only by tumor response/stability, but also functional 
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outcomes such as vision and quality of life, which have been poorly documented in prior 

studies.50   

 

Juvenile Myelomonocytic Leukemia (JMML) 

Children with NF1 at are increased risk of developing JMML,53 a uniquely RAS-

dependent leukemia cured only by stem cell transplantation. Although approximately 10% of 

JMML patients will have secondary mutations in the RAS pathway at diagnosis and at relapse, 

all patients have persistence of their initiating RAS pathway mutation at high allelic frequency.54 

This unique dependence on activated RAS signaling has led to extensive testing of MEKi as a 

potential therapy. 

 Preclinical studies have investigated the role of MEKi in genetically engineered mouse 

models of JMML driven by Kras, Nras or Nf1. Mice treated with mirdametinib or selumetinib 

demonstrated significantly longer survival, lower leukocyte count, higher hemoglobin levels and 

smaller spleens compared to controls.55 Interestingly, there was no difference in the Kras or Nf1 

mutant allele burden in the bone marrows of treated mice, and functional studies provided 

evidence that MEKi treatment induces disease regression by rebalancing cell proliferation and 

differentiation.55  To determine if acquired resistance could be treated with combination 

therapies, selumetinib was combined with a JAK/STAT inhibitor (AZD1480) in a JMML mouse 

model.  The combination of selumetinib and AZD1480 more effectively corrected most 

hematologic parameters to levels seen in control mice.56 

 These data led to the first-in-human trial of trametinib in patients with relapsed/refractory 

JMML (NCT03190915). This study is ongoing and response data are not yet available.  Future 
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directions for JMML trials will include using a clinically actionable DNA methylation assay to 

risk-stratify patients and guide treatment strategies.57 

 

MEKi for Non-Tumor Manifestations of NF1 

Bone 

Characteristic skeletal abnormalities are frequently observed in patients with NF1, and 

some are included in the NF1 diagnostic criteria.  In addition to the rare findings of long bone 

dysplasia and sphenoid wing dysplasia, many patients have relative short stature, generalized low 

bone mineral density, increased fracture risk, and a propensity for both dystrophic and non-

dystrophic scoliosis.58-61   

Several pre-clinical studies have investigated the impact of MEKi to rescue bony 

manifestations of NF1 seen in mouse models.62 Rescue of osteogenic differentiation of cultured 

Nf1-deficient bone-derived stromal cells was only achieved with the addition of a MEKi (U0126) 

and recombinant human BMP2 (rhBMP2).63  Similarly, co-treatment of mice with mirdametinib 

and rhBMP2 resulted in improved fracture healing following deletion of Nf1 at the fracture site, 

although improved healing was evident with rhBMP2 alone as well.62 

 Clinical evidence for a direct effect of MEKi on the skeleton is limited to case reports. 

One report describes two advanced melanoma patients without NF1 who developed osteopenia 

and spontaneous fractures following long-term MEKi therapy.64 In contrast, in 9 NF1 patients 

receiving selumetinib for PN, DEXA imaging did not reveal any difference in bone mineral 

density after one year of treatment.65 Abnormal fracture healing has not been reported in 

association with MEKi, but has been seen in some but not all MEKi-treated mouse models.63,66 
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Temporary interruption of MEKi treatment may be advisable for slow-healing fractures or those 

at risk for slow healing.   

Currently, there is no robust clinical evidence to implicate a direct clinical benefit or 

harm of MEKi therapy on skeletal manifestations of NF1.  Future studies, including careful 

monitoring of skeletal manifestations in patients receiving MEKi, may yield valuable 

information regarding their potential impact on bone health.  

 

Pain 

 Pain is common in NF1, yet the mechanisms are poorly understood.67  Emerging 

preclinical data suggest that pain pathways may be potentiated by MEK/ERK upregulation,68-71 

and MEK inhibition has been shown to reduce pain behaviors in animal models of nociceptive, 

neuropathic, inflammatory and visceral pain.69-72  

 The effect of MEKi on reducing the need for pain medications or sustaining long-term 

pain relief in NF1 has not been studied systematically. However, clinical trials and case studies 

consistently have observed decreased PN-related pain14,18. Improvement in pain may not 

correlate with tumor shrinkage as pain relief has been described soon after starting treatment,73 

and clinical trials often show a dissociation between pain relief and tumor response.14,73 In a 

phase 2 trial of selumetinib in children with PN, 74% had a clinically meaningful decrease in 

tumor pain score with stable or decreased pain medication, and pain relief was recorded as early 

as 2 months following treatment initiation.14 A similar pattern was found among NF1 adults with 

PNs receiving selumetinib.19 In older adolescents and adults treated with mirdametinib,18 tumor 

pain intensity decreased in the first four months of therapy and remained decreased for 12 

months among individuals whose tumors responded to therapy. 
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 Since multiple clinical trials indicate that MEKi reduces PN-related pain intensity and 

pain interference in daily life, intolerable PN-related pain may be a potential indication for 

initiating treatment with MEKi. Reliable and consistent pain measures such as the Numeric 

Rating Scale-11 and the Pain Interference Index74 are essential to prospectively evaluate pain, 

and should be incorporated in clinical trials focused on reducing the need for pain medications or 

sustaining long-term pain relief. 

 

Neurocognition 

 NF1-associated cognitive deficits have been well documented across multiple domains of 

functioning that affect daily activities and quality of life, including increased prevalence of 

attention-deficit/hyperactivity disorder and learning disabilities when compared to the general 

population.75,76 Suggested mechanisms include disrupted neurotransmission and impaired synaptic 

plasticity in key brain structures, including the hippocampus and prefrontal cortex, due to RAS 

hyperactivation, raising the question whether MEKi may be beneficial in the treatment of 

cognitive NF1 manifestations .  

Preclinical studies of neurocognitive effects of MEKi in Nf1 models have had conflicting 

results.  Two studies involving transient MEK inhibition in neonatal mouse pups suggested 

treatment may prevent and rescue NF1-associated developmental defects.77,78 In contrast, 

prolonged MEK suppression to prevent the natural progression of pluripotent stem cells resulted 

in irreversible cellular changes that impeded development.79 These studies highlight the 

complexity of neurodevelopment, drug penetration, and prevention strategies in NF1. 

 Recently, the first human trial examining the impact of MEKi treatment on cognition 

provided proof of concept that MEKi may improve executive function and working memory in 
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children and young adults with NF1 without significant neurotoxicity.80 Additional cognitive 

studies are underway, one examining treatment with selumetinib versus carboplatin/vincristine 

on cognitive functions in children with previously untreated NF1-LGG (NCT03871257), and 

another investigating the effects of trametinib versus no-treatment on cognitive and behavioral 

functioning in NF1 patients with optic pathway gliomas or PN (ACTRN12620001229965).  

 If MEKi treatment is shown to improve NF1-associated cognitive deficits, the ideal age 

to initiate treatment is still unknown. Early intervention has been important for behavioral 

therapies, but the potential for MEKi neurotoxicities in very young children is unknown. 

Currently, there are not enough data about the impact of MEKi on neurodevelopment and 

cognitive functions to make specific recommendations regarding their use in NF1. However, 

ongoing clinical studies will allow for comparison of MEKi-treated participants to treated and 

untreated control participants, provide longer follow-up, and offer additional safety information 

in young children with NF1.  

 

Practical Treatment Questions of MEKi 

Dosing  

 Initial dosing of specific MEKi has been established by early phase clinical trials as 

shown in Table 1.  In some cases, the recommended phase 2 dose of MEKi for patients with NF1 

is lower than the corresponding dose for oncologic indications due to differences in tolerability 

and treatment duration.13,17  Dose reductions of selumetinib due to toxicity do not appear to 

impact response in NF1-LGG,48 suggesting the effective treatment dose may be lower in this 

population.  There is more variability in PN trials.  Selumetinib dose reductions have affected 

efficacy in a portion of trial subjects;13,14 however, those undergoing mirdametinib dose 
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reductions never achieved a subsequent PR.18  Given the frequency of dosing interruptions or the 

need for supportive care for adverse events in MEKi trials, as well as the need for prolonged 

treatment for PN, there is interest in evaluating alternate dosing schedules, such as intermittent, 

non-continuous dosing, to understand if such schedules may improve tolerability while 

maintaining efficacy. Future and ongoing trials (NCT03326388) will address these unanswered 

questions.   

 

Time to Response 

Tumor response to MEKi may be gradual, but if a MEKi is going to benefit a patient, 

initial clinical and/or radiographic response is usually evident within one year of starting 

treatment.  Median time to PR for LGG48 and PN14 in children  treated with selumetinib was 3.6 

months and 7.4 months, respectively.  Given the slower growth rate of PN in adults, it is possible 

that tumor responses may occur later: the median time to response is presently 11 months among 

adults with PN.19  Clinical benefit (e.g. improvement in pain, airway or motor function in PN, or 

vision in OPG) may occur earlier and may not correlate with radiographic PR.14 

 

Duration of Treatment and Durability of Response 

The ideal treatment duration for PN or LGG with MEKi is still unknown.  Recent and 

current clinical protocols for LGG have established 2 years of therapy as an accepted duration.  

Durability of response appears variable after 2 years of MEKi for LGG.48  In contrast, most PN 

trials have treated for 2 years or more, and regrowth of PN has been observed in patients upon 

treatment discontinuation.  In the phase 2 trial of selumetinib, younger age at treatment 
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discontinuation was correlated with more subsequent tumor growth.81  Future and ongoing 

clinical trials will determine these patterns more clearly.   

 

Treatment Failure, Resistance, Re-Treatment, and Rotation of MEKi 

Although most NF1-PN or -LGG patients respond to MEKi treatment, tumor responses 

vary in magnitude and may be clinically insufficient for some patients.  Predictors of response to 

MEKi are unknown, but would be important to inform the biological mechanisms for 

tumorgenesis and growth in NF1.  Ras activation in NF1 may activate multiple pathways of cell 

proliferation and tumor growth, and it is not yet clear why MEKi were more successful than 

prior therapies targeting these pathways such as mTOR inhibitors which resulted in much less 

robust responses in PN and LGG than MEKi have.82-84 Understanding the mechanism of NF1 

tumor response and resistance may help lead to rational combinations of MEKi with other 

targeted inhibitors or cytotoxic therapies to improve response. 

In patients who initially respond to MEKi, acquired resistance in NF1-associated tumors 

appears to be infrequent.  Prior to assuming resistance, patient adherence and the possibility of 

malignant transformation (for PN) should be evaluated. Some PN that responded to MEKi 

therapy have responded again after an interruption in therapy. Similar data for LGG are 

emerging.85   

Some practitioners have rotated from one MEKi to another in patients with NF1-

associated tumors who have already benefited from MEKi therapy (clinical or radiographic) in 

hopes of reducing or eliminating intolerable, non-serious toxicities that cannot be managed with 

optimal supportive care.86  Although there is only anecdotal information to support this strategy, 

it is not unreasonable to consider trying a different MEKi in these circumstances.  In contrast, for 
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patients that have not benefited (clinically and/or radiographically) from MEKi treatment, there 

is no data to recommend switching to a different MEKi.   

 

Common adverse events and management 

Although generally well tolerated, MEKi can cause substantial, intolerable toxicities. The 

toxicity profile for MEKi is considerably different from traditional cytotoxic chemotherapy and 

requires careful screening and management.  Recently, detailed supportive care guidelines have 

been published.87 Most NF1 patients treated with MEKi will develop laboratory abnormalities, 

skin and/or gastrointestinal toxicity.13,14,18,48,88 The most commonly reported skin toxicities include 

acneiform rash (particularly in post-pubertal patients), eczematous dermatitis (particularly in pre-

pubertal patients and those with known eczema), chronic paronychia, mucositis, photosensitivity, 

hair lightening, and alopecia.89,90 Rashes can be intolerable, and 25-40% of study participants have 

required dose reductions due to this concern.13,14 Gastrointestinal toxicities are also common, 

including diarrhea, nausea, and weight gain.14,48 Ongoing trials in patients with NF1 suggest 

increased incidence of skin and GI toxicities in adults compared with children. The most frequent 

laboratory abnormality is asymptomatic elevation of CK, which rarely requires dose modification 

if clinical symptoms are absent.14  

Cardiac and ophthalmologic evaluations are recommended throughout treatment, although 

toxicities are seen more commonly in adults. Decreased left ventricular ejection fraction associated 

with MEKi appears to be reversible upon dose modification or drug hold, and screening 

echocardiograms are recommended.91 In adult melanoma trials of MEKi, ocular toxicities, 

including subretinal fluid collection, retinal vein occlusion, and retinal detachment, were 
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reported.92 By contrast, significant ocular toxicities have not been observed in pediatric patients 

with NF1.14   

Preclinical models indicate that MEKi may affect wound healing, although their clinical 

impact on wound healing has not been established.  It may be appropriate to hold drug pre-

operatively and then post-operatively until adequate wound healing has occurred, typically at least 

2 weeks.87  

Toxicity management for MEKi requires careful surveillance, and development of long-

term toxicities is being monitored in children and adults with NF1.  Recommended screening for 

MEKi-treated NF1 patients is found in Table 2.   

 

Use in other RASopathies 

NF1 belongs to a group of syndromes called RASopathies, that are characterized by 

germline RAS pathway activation.93 RASopathies such as Noonan, Costello, and 

cardiofaciocutaneous syndromes have significant overlap in phenotypic features and cancer 

predisposition, raising the possibility that MEKi may ameliorate or prevent worsening of disease 

manifestations. 

Animal models of RASopathies have been used to examine the effect of MEKi on these 

syndromes. Intrauterine treatment in Noonan syndrome mouse models have rescued the 

craniofacial abnormalities associated with this syndrome,94 while cardiac defects and growth 

deficits have been reduced by post-natal treatment.95,96 Enamel defects in models of Costello 

syndrome have also been rescued with MEKi treatment 97. In a zebrafish model of 

cardiofaciocutaneous syndrome, lower doses of MEKi rescued developmental phenotypes, while 
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higher doses led to severe developmental consequences.98 Cognitive deficits and abnormal 

behavior have also been ameliorated in some models of Costello and Noonan syndrome.99,100 

Lessons learned from animal models have led to anecdotal experience treating life-

threatening conditions associated with RASopathies in humans when no other therapies are 

available.  Noonan-associated hypertrophic cardiomyopathy is associated with dismal outcomes 

when it presents in early infancy, often without any effective treatments.  Trametinib has been 

used in two infants with this condition and was associated with rapid decrease in left ventricular 

mass, improved valve stenosis and normalization of lab values.101 However, the safety and 

efficacy of MEKi in targeting other RASopathies is unknown, and any clinical benefit should be 

explored in clinical trials. 

 

Conclusion 

 MEKi are the first effective targeted therapy for individuals with symptomatic, 

inoperable NF1 PN and hold the potential to revolutionize care for other NF1 tumor and non-

tumor manifestations.  Further investigations into the biologic mechanisms for NF1 

manifestations, the downstream impact of MEKi on Ras effector pathways, and windows of 

opportunity for intervention are needed to help guide clinical trial development. Similarly, 

additional data for MEKi regarding clinical efficacy in treating the diverse manifestations of NF1 

and long-term safety data are needed to guide clinical care.  Prospective trials, continued 

molecular discoveries, and increased clinical experience will provide a broader understanding of 

the role for MEKi in NF1 and other RASopathies.  
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BOX: Consensus Recommendations for the Use of MEK Inhibitors for NF1 Manifestations 

Tumor Manifestations 

- MEKi are approved for treatment of symptomatic, inoperable PN in children; their use in 

asymptomatic, growing, inoperable PN may be appropriate based on the clinical situation. 

- There is no evidence to suggest that monotherapy with MEKi will prevent or successfully 

treat MPNST. 

- MEKi are effective in treating NF1-LGG but are best used in the context of a clinical trial 

or for relapsed disease since their effect on functional outcomes and long-term tumor 

control are unknown. 

Non-tumor Manifestations 

- Little clinical data are available for the impact of MEKi on bony manifestations of NF1 

and careful monitoring of skeletal manifestations during treatment and in future clinical 

trials is recommended.  

- PN-associated pain may be a potential indication for MEKi treatment but should be 

monitored systematically with validated pain measures. 

- Based on current data, there is no evidence of neurotoxicity with MEKi treatment in 

children and young adults. Further studies are needed to evaluate any potential 

neurocognitive benefit. 

Practical Treatment Issues 

- PN and LGG response may be gradual, but patients that respond to MEKi generally show 

clinical or radiographic response within 1 year. 

- Most studies have treated for 2 years or more for PN or LGG. PN growth often resumes 

after treatment is suspended, but response may be more durable in LGG.  
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- MEKi are overall well tolerated with regular screening and management of toxicities but 

should be held for clinically significant toxicities and can be restarted at a lower dose 

once the toxicity improves. Long term safety is still being evaluated.  
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Table 1: Comparison of Dosing, Pharmacologic Characteristics and Clinical Trial Experience of Five MEK Inhibitors 

Agent 
Available 
formulations Dosage in NF1 

Adult Cancer 
Dosage 

Available Literature 
and use in NF1 

Dosage 
Forms 

CNS 
penetration 

Grade 3/4 AEs 
(>5%) Half-life Metabolism Excretion 

Distinguishing 
features 

Availability and 
approval 

Binimetinib 
(MEK162, 
ARRY-162) 

Tablet; 
pharmacy-
prepared 
suspension 

32mg/m2/dose BID 
continuous 
(max dose 45 mg PO 
BID) 
(For adults with PN, max 
dose 30 mg PO BID17)  

45mg PO BID 
(melanoma) 

Adult trials in 
colorectal cancer 
(>200 pts treated with 
binimetinib in 
combination)102  
Pediatric Phase 1 (19 
pts, 17 with LGG)49 

15mg 

Diffuse 
penetration 
(brain and 
tumor) in 
rodent model49 

Anemia, fatigue, 
dyspnea103 

3.5 
hours104 

UGT1A1 
glucuronidation.  
Active metabolite 
produced by 
CYP1A2 and 
CYP2C19.104 

Feces and 
urine104 

Transient muscle 
weakness may be 
a common drug-
specific and 
pediatric-specific 
toxicity 

FDA and EMA 
approved in combination 
with encorafenib for 
BRAF mutant 
melanoma 

Cobimetinib 
(GDC-0973, 
XL-518) 

Tablet 
60mg PO QD 
21 days on, 7 days off  

60mg PO QD 
21 days on, 7 
days off 
(melanoma)  

Adult trials in 
melanoma (>200 pts 
received cobimetinib 
in combination)105,106  

20mg 

Brain to 
plasma ratio 
(Kp) at 6 h 
post dose was 
0.3 in WT 
mice107 

Diarrhea, rash, 
fatigue108 

43.6 
hours109 

CYP3A4, also by 
direct 
glucuronidation 
via UGT2B7109 

Feces via 
biliary 
excretion109 

  

FDA and EMA 
approved in combination 
with vemurafenib for 
metastatic melanoma 

Mirdametinib 
(PD-0325901) 

Capsule and 
liquid 
formulations 
available 

2 mg/m2/dose bid  
(max 4 mg) 
3 weeks on, 1 week off 

15mg BID, 5 
days on/2 days 
off, 3 weeks 
on, 1 week off 
(NSCLC) 

Phase 2 (19 with NF1-
PN)18 

1 mg 

Excellent 
penetration at 
clinically 
relevant 
doses110 

Lymphopenia, 
dehydration, 
fatigue, diarrhea, 
rash, confusion, 
dyspnea, 
hallucination, 
Alkaline 
Phosphatase 
abnormality, 
hyponatremia, 
hypocalcemia111 

8.6 
hours112 

Glucuronidation 
and oxidation112 

Feces via 
biliary 
excretion112 

Can be 
administered with 
food, excellent 
CNS penetration 

Not FDA or EMA 
approved 

Selumetinib 
(AZD6244, 
ARRY-142886) 

Capsule 

25mg/m2 PO BID 
continuous  
(max dose 50mg PO 
BID) 

75mg PO BID 
(melanoma) 

Phase 1 (38 with 
LGG, 24 with NF1-
PN)13,88 
Phase 2 (50 LGG (25 
with NF1) and 50 
NF1-PN)14,48  
Ongoing studies in 
NF1-LGG, non-NF1 
LGG, and NF1-PN 

10 mg 
25 mg 

Poor CSF 
penetration in 
primate 
model; 
effective in 
clinical trials 
of low grade 
glioma113 

CK increase, 
rash, neutropenia, 
paronychia, 
diarrhea, weight 
gain14,48  

5.3-7.2 
hours114 

CYP3A4, also by 
direct 
glucuronidation 
via UGT1A1 and 
-1A3114 

Feces and 
urine114 

Extensively 
studied in NF1 

FDA and EMA 
approved for children 
with symptomatic, 
inoperable NF1 
plexiform neurofibroma 

Trametinib 
(GSK1120212) 

Tablet; 
suspension as 
compassionate 
use 

0.032mg/kg (<6years 
old) 
0.025mg/kg (>6years 
old) 
(max 2mg) 
various schedules 

2mg PO QD 
(melanoma) 

Adult studies in 
melanoma (in 
combination)115 
Phase 1 in children 
(78 pts including at 
least 26 with 
NF1)15,116  

0.5 mg 
1 mg 
2 mg 

Brain to 
plasma ratio 
(Kp) in WT 
mice = 0.15117 

Hypertension, 
rash118 

4–5 
days118  

Deacetylation 
alone or in 
combination with 
hydroxylation118 

Feces and 
urine118 

Suspension 
available as 
compassionate 
use 

FDA and EMA 
approved for BRAF 
mutant melanoma, and 
(in combination with 
dabrafenib) for BRAF 
mutant NSCLC  

Abbreviations: AEs: Adverse Events; BID: Twice daily; CNS: Central Nervous System; CSF: Cerebrospinal fluid; FDA: US Food and Drug Administration; EMA: European Medicines Agency; LGG: 
Low grade glioma; NF1: Neurofibromatosis type 1; NSLC: Non-small cell lung cancer; PN: Plexiform Neurofibroma; PO: By mouth; QD: Daily; WT: Wild type 
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Table 2: Recommended Surveillance for Patients Receiving MEK Inhibitor Therapy 
 

Evaluation Monitoring Recommendation* 

Physical examination with careful evaluation 

of skin, oral mucosa and nails 

Every visit, generally monthly 

Review of systems including GI, vision, skin Every visit 

Ophthalmological examination Baseline, then every 6-12 months, and for 

new symptoms.  May consider increased 

frequency for adults 

Echocardiogram/Ejection Fraction Baseline, then every 3-6 months 

Electrocardiogram Baseline, then as clinically indicated  

Pregnancy status Baseline, then per institutional standards for 

patients on cytotoxic therapy 

Laboratory evaluations Creatine kinase, metabolic panel#, liver 

function tests#, complete blood count at 

baseline, every month for the first several 

months and then every 3-6 months. 

Amylase, lipase at baseline and then as 

clinically indicated 

*Adapted from Klesse et al87 

# Metabolic panel to include electrolytes, creatinine, glucose; liver function tests to include 

aspartate aminotransferase and alanine aminotransferase 
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